统计策略搜索强化学习方法及应用 mobi 下载 网盘 caj lrf pdf txt 阿里云

统计策略搜索强化学习方法及应用电子书下载地址
内容简介:
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
书籍目录:
第1章 强化学习概述···························································································1
1.1 机器学习中的强化学习··········································································1
1.2 智能控制中的强化学习··········································································4
1.3 强化学习分支··························································································8
1.4 本书贡献·······························································································11
1.5 本书结构·······························································································12
参考文献········································································································14
第2章 相关研究及背景知识·············································································19
2.1 马尔可夫决策过程················································································19
2.2 基于值函数的策略学习算法·································································21
2.2.1 值函数·······················································································21
2.2.2 策略迭代和值迭代····································································23
2.2.3 Q-learning ··················································································25
2.2.4 基于小二乘法的策略迭代算法·············································27
2.2.5 基于值函数的深度强化学习方法·············································29
2.3 策略搜索算法························································································30
2.3.1 策略搜索算法建模····································································31
2.3.2 传统策略梯度算法(REINFORCE算法)······························32
2.3.3 自然策略梯度方法(Natural Policy Gradient)························33
2.3.4 期望化的策略搜索方法·····················································35
2.3.5 基于策略的深度强化学习方法·················································37
2.4 本章小结·······························································································38
参考文献········································································································39
第3章 策略梯度估计的分析与改进·································································42
3.1 研究背景·······························································································42
3.2 基于参数探索的策略梯度算法(PGPE算法)···································44
3.3 梯度估计方差分析················································································46
3.4 基于基线的算法改进及分析·························································48
3.4.1 基线的基本思想································································48
3.4.2 PGPE算法的基线······························································49
3.5 实验·······································································································51
3.5.1 示例···························································································51
3.5.2 倒立摆平衡问题········································································57
3.6 总结与讨论····························································································58
参考文献········································································································60
第4章 基于重要性采样的参数探索策略梯度算法··········································63
4.1 研究背景·······························································································63
4.2 异策略场景下的PGPE算法·································································64
4.2.1 重要性加权PGPE算法·····························································65
4.2.2 IW-PGPE算法通过基线减法减少方差····································66
4.3 实验结果·······························································································68
4.3.1 示例···························································································69
4.3.2 山地车任务················································································78
4.3.3 机器人仿真控制任务································································81
4.4 总结和讨论····························································································88
参考文献·····························
作者介绍:
赵婷婷,天津科技大学人工智能学院副教授,主要研究方向为人工智能、机器学习。中国计算机协会(CCF) 会员、YOCSEF 会员、中国人工智能学会会员、人工智能学会模式识别专委会委员,2017年获得天津市"131”创新型人才培养工程第二层次人选称号。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的最近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。最后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
网站评分
书籍多样性:4分
书籍信息完全性:5分
网站更新速度:6分
使用便利性:3分
书籍清晰度:4分
书籍格式兼容性:6分
是否包含广告:8分
加载速度:5分
安全性:7分
稳定性:4分
搜索功能:8分
下载便捷性:3分
下载点评
- 无水印(515+)
- 方便(376+)
- 好评(187+)
- 微信读书(157+)
- 图书多(58+)
- 引人入胜(524+)
- 内容齐全(588+)
- 二星好评(500+)
- 收费(204+)
下载评价
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 沈***松:
挺好的,不错
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 寇***音:
好,真的挺使用的!
- 网友 郗***兰:
网站体验不错
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 融***华:
下载速度还可以
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 田***珊:
可以就是有些书搜不到
- 网友 冷***洁:
不错,用着很方便
喜欢"统计策略搜索强化学习方法及应用"的人也看了
阿登森林的鏖战 mobi 下载 网盘 caj lrf pdf txt 阿里云
Perl语言编程 mobi 下载 网盘 caj lrf pdf txt 阿里云
TOTE BAG (MINI EDN) mobi 下载 网盘 caj lrf pdf txt 阿里云
杭州小吃地图 mobi 下载 网盘 caj lrf pdf txt 阿里云
证券交易管理法律实案50例 白光 经济管理出版社【正版】 mobi 下载 网盘 caj lrf pdf txt 阿里云
【新华书店自营】奥数5年级标准教程习题精选能力测试三合一 mobi 下载 网盘 caj lrf pdf txt 阿里云
外教社英汉汉英百科词汇手册系列:法学词汇手册 mobi 下载 网盘 caj lrf pdf txt 阿里云
孙子兵法(中英双语·诵读版) mobi 下载 网盘 caj lrf pdf txt 阿里云
建筑用木塑复合板应用技术标准 JGJ/T 478-2019 备案号 J 2770-2019 中国建筑工业出版社 mobi 下载 网盘 caj lrf pdf txt 阿里云
象棋名手大赛佳局赏析(2022年度) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 【年末清仓】2010考研政治形势与政策:理论热点剖析及命题预测 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 逢君正当时【售后无忧】 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 牛津英汉双解数学词典 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 世界伟人传记 孔子 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 建设工程监理案例分析核心考点速记 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 湘学研究(二〇一六年第二辑 总第八辑) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 套装全4本药品监督管理常用法律法规文件汇编药品卷/化妆品卷/医疗器械卷/综合卷国家药品监督管理局政策法规司中国医药科技出版社 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 建筑室内设计制图与CAD(张英杰) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 正版床头灯3000词英汉对照呼啸山庄英语阅读双语读物初高中大学生课外阅读英文小说世界名著阅读书籍删减版中英双语版书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 网球技巧图解 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:4分
人物塑造:8分
主题深度:7分
文字风格:6分
语言运用:5分
文笔流畅:6分
思想传递:5分
知识深度:4分
知识广度:9分
实用性:9分
章节划分:4分
结构布局:6分
新颖与独特:5分
情感共鸣:9分
引人入胜:4分
现实相关:7分
沉浸感:3分
事实准确性:9分
文化贡献:9分