Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi 下载 网盘 caj lrf pdf txt 阿里云

Making sense of data了解数据:探索数据分析与数据挖掘实用指南精美图片
》Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书籍版权问题 请点击这里查看《

Making sense of data了解数据:探索数据分析与数据挖掘实用指南书籍详细信息

  • I***N:9780470074718
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2006-11
  • 页数:292
  • 价格:636.20
  • 纸张:胶版纸
  • 装帧:平装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

内容简介:

  A practical, step-by-step approach to *** sense out of data

Making Sense of Data educates readers on the steps and issues that need to be c***idered in order to successfully complete a data ***ysis or data mining project. The author provides clear explanati*** that guide the reader to make timely and accurate decisi*** from data in almost every field of study. A step-by-step approach aids professionals in carefully ***yzing data and implementing results, leading to the development of smarter business decisi***. With a comprehensive collection of methods from both data ***ysis and data mining disciplines, this book successfully describes the issues that need to be c***idered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision *** from data.

Readers are given a solid foundation in the procedures associated with complex data ***ysis or data mining projects and are provided with concrete discussi*** of the most universal tasks and technical soluti*** related to the ***ysis of data, including:

* Problem definiti***

* Data preparation

* Data visualization

* Data mining

* Statistics

* Grouping methods

* Predictive modeling

* Deployment issues and applicati***

Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data ***ysis or data mining project.

From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relati***hips in the data, to *** predicti*** from the data, Making Sense of Data addresses the many issues that need to be c***idered as well as the steps that need to be taken to master data ***ysis and mining.


书籍目录:

Preface

1 Introduction

 1.1 Overview

 1.2 Problem definition

 1.3 Data preparation

 1.4 Implementation of the ***ysis

 1.5 Deployment of the results

 1.6 Book outline

 1.7 Summary

 1.8 Further reading

2 Definition

 2.1 Overview

 2.2 Objectives

 2.3 Deliverables

 2.4 Roles and resp***ibilities

 2.5 Project plan

 2.6 Case study

  2.6.1 Overview

  2.6.2 Problem

  2.6.3 Deliverables

  2.*** Roles and resp***ibilities

  2.6.5 Current situation

  2.6.6 Timetable and budget

  2.6.7 Cost/benefit ***ysis

 2.7 Summary

 2.8 Further reading

3 Preparation

 3.1 Overview

 3.2 Data sources

 3.3 Data understanding

  3.3.1 Data tables

  3.3.2 Continuous and discrete variables

  3.3.3 Scales of measurement

  3.3.4 Roles in ***ysis

  3.3.5 Frequency distribution

 3.4 Data preparation

  3.4.1 Overview

  3.4.2 Cleaning the data

  3.4.3 Removing variables

  3.4.4 Data transformati***

  3.4.5 Segmentation

 3.5 Summary

3.6 Exercises

 3.7 Further reading

4 Tables and graphs

 4.1 Introduction

 4.2 Tables

  4.2.1 Data tables

  4.2.2 Contingency tables

  4.2.3 Summary tables

 4.3 Graphs

  4.3.1 Overview

  4.3.2 Frequency polygrams and histograms

  4.3.3 Scatterplots

  4.3.4 Box plots

  4.3.5 Multiple graphs

 4.4 Summary

 4.5 Exercises

 4.6 Further reading

5 Statistics

 5.1 Overview

 5.2 Descriptive statistics

  5.2.1 Overview

  5.2.2 Central tendency

  5.2.3 Variation

  5.2.4 Shape

  5.2.5 Example

 5.3 Inferential statistics

  5.3.1 Overview

  5.3.2 Confidence intervals

  5.3.3 Hypothesis tests

  5.3.4 Chi-square

  5.3.5 One-way ***ysis of variance

 5.4 Comparative statistics

  5.4.1 Overview

  5.4.2 Visualizing relati***hips

  5.4.3 Correlation coefficient (r)

  5.4.4 Correlation ***ysis for more than two variables

 5.5 Summary

 5.6 Exercises

 5.7 Further reading

6 Grouping

 6.1 Introduction

  6.1.1 Overview

  6.1.2 Grouping by values or ranges

  6.1.3 Similarity measures

  6.1.4 Grouping approaches

 6.2 Clustering

  6.2.1 Overview

  6.2.2 Hierarchical agglomerative clustering

  6.2.3 K-means clustering

 6.3 Associative rules

  6.3.1 Overview

  6.3.2 Grouping by value combinati***

  6.3.3 Extracting rules from groups

  6.3.4 Example

*** Decision trees

  ***.1 Overview

  ***.2 Tree generation

  ***.3 Splitting criteria

  ***.4 Example

 6.5 Summary

 6.6 Exercises

 6.7 Further reading

7 Prediction

 7.1 Introduction

  7.1.1 Overview

  7.1.2 Classification

  7.1.3 Regression

  7.1.4 Building a prediction model

  7.1.5 Applying a prediction model

 7.2 Simple regression models

  7.2.1 Overview

  7.2.2 Simple linear regression

  7.2.3 Simple nonlinear regression

 7.3 K-nearest neighbors

7.3.1 Overview

  7.3.2 Learning

  7.3.3 Prediction

7.4 Classification and regression trees

  7.4.1 Overview

  7.4.2 Predicting using decision trees

  7.4.3 Example

 7.5 Neural networks

  7.5.1 Overview

  7.5.2 Neural network layers

  7.5.3 Node calculati***

  7.5.4 Neural network predicti***

  7.5.5 Learning process

  7.5.6 Backpropagation

  7.5.7 Using neural networks

  7.5.8 Example

7.6 Other methods

  7.7 Summary

  7.8 Exercises

  7.9 Further reading

8 Deployment

 8.1 Overview

 8.2 Deliverables

 8.3 Activities

 8.4 Deployment scenarios

 8.5 Summary

 8.6 Further reading

9 Conclusi***

 9.1 Summary of process

 9.2 Example

  9.2.1 Problem overview

  9.2.2 Problem definition

  9.2.3 Data preparation

  9.2.4 Implementation of the ***ysis

  9.2.5 Deployment of the results

 9.3 Advanced data mining

  9.3.1 Overview

  9.3.2 Text data mining

  9.3.3 Time series data mining

  9.3.4 Sequence data mining

 9.4 Further reading

Appendix A Statistical tables

 A.1 Normal distribution

 A.2 Student’s t-distribution

 A.3 Chi-square distribution

 A.4 F-distribution

Appendix B Answers to exercises

Glossary

Bibliography

Index


作者介绍:

GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing soluti*** to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

A practical, step-by-step approach to *** sense out of data

Making Sense of Data educates readers on the steps and issues that need to be c***idered in order to successfully complete a data ***ysis or data mining project. The author provides clear explanati*** that guide the reader to make timely and accurate decisi*** from data in almost every field of study. A step-by-step approach aids professionals in carefully ***yzing data and implementing results, leading to the development of smarter business decisi***. With a comprehensive collection of methods from both data ***ysis and data mining disciplines, this book successfully describes the issues that need to be c***idered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision *** from data.

Readers are given a solid foundation in the procedures associated with complex data ***ysis or data mining projects and are provided with concrete discussi*** of the most universal tasks and technical soluti*** related to the ***ysis of data, including:

* Problem definiti***

* Data preparation

* Data visualization

* Data mining

* Statistics

* Grouping methods

* Predictive modeling

* Deployment issues and applicati***

Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data ***ysis or data mining project.

From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relati***hips in the data, to *** predicti*** from the data, Making Sense of Data addresses the many issues that need to be c***idered as well as the steps that need to be taken to master data ***ysis and mining.


书籍真实打分

  • 故事情节:9分

  • 人物塑造:5分

  • 主题深度:7分

  • 文字风格:3分

  • 语言运用:4分

  • 文笔流畅:6分

  • 思想传递:9分

  • 知识深度:4分

  • 知识广度:8分

  • 实用性:4分

  • 章节划分:8分

  • 结构布局:9分

  • 新颖与独特:9分

  • 情感共鸣:9分

  • 引人入胜:8分

  • 现实相关:4分

  • 沉浸感:7分

  • 事实准确性:7分

  • 文化贡献:5分


网站评分

  • 书籍多样性:3分

  • 书籍信息完全性:6分

  • 网站更新速度:8分

  • 使用便利性:4分

  • 书籍清晰度:3分

  • 书籍格式兼容性:6分

  • 是否包含广告:9分

  • 加载速度:8分

  • 安全性:7分

  • 稳定性:9分

  • 搜索功能:9分

  • 下载便捷性:4分


下载点评

  • 值得购买(319+)
  • 无多页(127+)
  • 章节完整(348+)
  • 好评多(669+)
  • 不亏(301+)
  • 五星好评(61+)

下载评价

  • 网友 扈***洁:

    还不错啊,挺好

  • 网友 游***钰:

    用了才知道好用,推荐!太好用了

  • 网友 师***怡:

    说的好不如用的好,真心很好。越来越完美

  • 网友 利***巧:

    差评。这个是收费的

  • 网友 养***秋:

    我是新来的考古学家

  • 网友 戈***玉:

    特别棒

  • 网友 孙***夏:

    中评,比上不足比下有余

  • 网友 习***蓉:

    品相完美

  • 网友 郗***兰:

    网站体验不错

  • 网友 融***华:

    下载速度还可以

  • 网友 潘***丽:

    这里能在线转化,直接选择一款就可以了,用他这个转很方便的


随机推荐