预测控制系统及其应用/电气自动化新技术丛书 mobi 下载 网盘 caj lrf pdf txt 阿里云

预测控制系统及其应用/电气自动化新技术丛书电子书下载地址
内容简介:
本书是作者近年来从事预测控制――一类新型计算机控制算
法方面教学和科研工作的总结。全书深入浅出、系统地介绍了模型
算法控制(MAC)、动态矩阵控制(DMC)、广义预测控制(GPC)、广
义预测极点配置控制(GPP)等几种主要预测控制算法的基本原
理、设计方法、参数选择及闭环特性分析等,并且用内模控制结构
将各类预测控制算法统一起来,给出了它们的统一格式。此外,还
将预测控制与自适应控制结合起来,分析了自适应预测控制算法
的全局收敛性。全书突出理论联系实际,给出了8个工业应用实
例,实用性强,且内容新颖,条理清晰,反映了国内外预测控制的最
新成就。
本书适宜于从事电气自动化技术的工程技术人员阅读,也可
作为大专院校工业自动化、自动控制、计算机应用等专业的教材和
教学参考书。
书籍目录:
目 录
《电气自动化新技术丛书》序言
前言
第1章 绪论
第2章 内部模型控制
2.1内部模型与内模控制器设计
2.1.1内部模型
2.1.2内模控制(IMC)系统的性质
2.1.3内模控制器设计
2.1.4非最小相位系统非参数模型内模控制器设计
2.1.5开环不稳定系统内模控制器设计
2.2推理控制
2.2.1推理控制系统的构成
2.2.2推理控制器设计
2.2.3模型误差对系统性能的影响
2.2.4输出可测条件下的推理控制
2.3Smith预测控制
2.3.1Smith预测控制的时延补偿原理
2.3.2Smith预测控制器的内模控制结构设计
2.3.3闭环系统特性
2.4Jury稳定判据
2.5自校正内模控制器
2.5.1采用辨识参数模型的自校正控制算法
2.5.2采用辨识参数模型再转换为非参数模型的
自校正控制算法
2.5.3采用带误差死区的自校正控制算法
2.6热水锅炉的内模控制
2.6.1数学模型及内模控制器设计
2.6.2实时控制中的几个问题
2.7造纸机的增益自适应内模控制
2.7.1造纸过程简介
2.7.2系统数学模型及控制器设计
2.7.3仿真及实控结果
第3章 模型算法控制
3.1单步模型算法控制
3.1.1输出预测
3.1.2参考轨迹
3.1.3最优控制律计算
3.1.4闭环系统特性
3.1.5纯时延系统的预测控制
3.2多步模型算法控制(MAC)
3.2.1多步输出预测
3.2.2最优控制律计算
3.2.3MAC的IMC结构
3.2.4闭环系统特性
3.3增量型模型算法控制(IMAC)
3.3.1多步输出预测
3.3.2最优控制律计算
3.3.3IMAC的IMC结构
3.3.4闭环系统特性
3.4模型算法控制系统对象模型和控制器的最小化形式
3.4.1MAC非最小化模型与最小化模型的转换
3.4.2MAC控制器的最小化形式
3.4.3IMAC控制器的最小化形式
3.5模型算法控制系统的稳定性与鲁棒性
3.5.1模型匹配时MAC系统的稳定性
3.5.2模型失配时MAC系统的稳定鲁棒性
3.6预测控制系统的参数选择
3.6.1控制参数P、M、Q、λ的选择
3.6.2采样周期T↓0与模型长度N的选择
3.7单值模型算法预测控制
3.7.1控制律计算
3.7.2闭环系统特性
3.7.3闭环稳定性分析
3.8自校正模型算法控制器
3.8.1采用估计参数模型的自校正显式算法
3.8.2采用带误差死区的自校正显式算法
3.8.3采用直接辨识控制器参数的自校正隐式算法
3.8.4采用误差预报的自校正控制算法
3.9燃煤电站球磨机的模型算法控制
3.9.1系统的控制要求与特性
3.9.2球磨机模型算法控制
3.9.3控制器的工程实践
第4章 动态矩阵控制
4.1多步动态矩阵控制
4.1.1预测模型
4.1.2最优控制律计算
4.1.3DMC的IMC结构
4.1.4闭环系统特性
4.2极点配置动态矩阵控制
4.2.1多步输出预测
4.2.2控制器设计
4.2.3闭环极点配置
4.3动态矩阵控制器的最小化形式
4.3.1DMC非最小化对象模型与最小化对象
模型间的转换
4.3.2DMC控制器的最小化形式
4.4动态矩阵控制系统的状态空间分析
4.4.1DMC系统的状态空间描述
4.4.2状态观测器
4.4.3MAC系统状态空间描述及其与DMC的统一格式
4.5双值动态矩阵控制
4.5.1双值动态矩阵控制算法
4.5.2关于双值动态矩阵控制的讨论
4.6自校正动态矩阵控制器
4.6.1采用估计参数模型的自校正显式算法
4.6.2采用带误差死区的自校正显式算法
4.6.3采用直接辨识控制器参数的自校正隐式算法
4.7高温力学材料试验机的动态矩阵控制
4.7.1高温力学材料试验机的结构
4.7.2计算机控制系统构成
4.7.3预测补偿动态矩阵控制算法
4.7.4实时控制结果
第5章 广义预测控制
5.1广义预测控制的基本型式
5.1.1多步输出预测及Diophantine方程的递推解
5.1.2最优控制律计算
5.1.3GPC 的IMC结构
5.1.4闭环系统特性
5.1.5.显式广义预测自校正控制器
5.2具有模型误差修正的广义预测控制
5.2.1j步导前输出
5.2.2最优控制律计算
5.2.3系统的IMC结构和闭环系统特性
5.2.4引入滤波器T(z↑1)的广义预测控制
5.2.5显式广义预测自校正控制器
5.3控制器采用原模型参数的广义预测控制
5.3.1多步导前输出与最优控制律计算
5.3.2简化控制律
5.3.3控制器用原模型参数广义预测控制自校正算法
5.4直接辨识控制器参数的隐式广义预测控制
5.4.1广义预测控制律计算
5.4.2隐式广义预测自校正控制器
5.5采用两个辨识器的隐式广义预测控制
5.5.1多步导前输出
5.5.2最优控制律计算
5.5.3等价广义性能指标
5.5.4参数辨识方程与辨识算法
5.6广义预测控制的稳定性和鲁棒性
5.6.1GPC系统的闭环稳定性
5.6.2GPC系统的鲁棒性
5.7单值广义预测控制
5.7.1单值GPC控制律计算
5.7.2闭环系统特性
5.7.3闭环系统稳定性分析
5.7.4讨论
5.8工业锅炉的加权广义预测自校正控制
5.8.1工业锅炉及其控制
5.8.2计算机控制系统的构成
5.8.3加权广义预测控制器
5.8.4广义预测自校正控制在锅炉上的实现
5.8.5实际运行结果
第6章 极点配置广义预测控制
6.1广义预测极点配置(GPP)控制
6.1.1广义输出预测误差
6.1.2最优控制律计算
6.1.3闭环系统特性与极点配置
6.1.4显式广义预测极点配置自校正控制器
6.2广义预测极点配置加权控制
6.2.1基于CARMA模型的广义预测控制
6.2.2P步加权控制律
6.2.3闭环系统输出方程及闭环极点配置
6.2.4显式广义预测零极点配置自校正加权控制器
6.3煤气罩式退火炉的广义预测极点配置加权控制
6.3.1罩式退火炉的结构及计算机控制系统的构成
6.3.2罩式退火炉的数学模型
6.3.3控制器设计
6.3.4实际运行结果
第7章 神经网络在预测控制中的应用
7.1概述
7.2神经模型学习规则及学习算法
7.2.1单神经元模型
7.2.2神经网络的学习规则
7.2.3误差反向传播(BP)神经网络
7.2.4Hopfield神经网络
7.3基于神经网络的内模控制
7.3.1神经网络内部模型的建立
7.3.2神经网络逆模型的建立
7.3.3基于BP网络的自校正内模控制
7.4基于神经网络的增量型模型算法控制
7.4.1多步输出预测与优化指标
7.4.2神经网络模型算法控制
7.5基于神经网络解耦的广义预测控制
7.5.1多变量系统的耦合程度及解耦
7.5.2基于神经网络的静态解耦
7.5.3基于神经网络的动态解耦
7.5.4单变量系统广义预测控制
7.6电加热炉的神经网络预测控制
7.6.1电加热炉的神经网络内模控制
7.6.2电加热炉的神经网络解耦广义预测控制
第8章 预测控制算法的内模结构及其统一格式
8.1各类预测控制算法的内模结构及其统一格式
8.2基于非参数模型IMAC及DMC系统的内模结构
及其统一格式
8.3基于参数模型GPC及GPP系统的内模结构
及其统一格式
8.3.1GPC系统的内模结构及其统一格式
8.3.2GPP系统的内模结构及其统一格式
8.4结束语
第9章 自适应预测控制算法的收敛性分析
9.1显式模型算法自校正控制器的全局收敛性
9.1.1多步输出预测与控制律计算
9.1.2显式自校正算法的全局收敛性
9.2隐式模型算法自校正控制器的全局收敛性
9.2.1多步输出预测与控制律计算
9.2.2隐式自校正算法的全局收敛性
9.3显式广义预测自校正控制器的全局收敛性
9.3.1多步输出预测与控制律计算
9.3.2显式自校正控制算法的全局收敛性
9.4隐式广义预测自校正控制器的全局收敛性
9.4.1多步输出预测及控制律计算
9.4.2隐式广义预测自校正控制算法
9.4.3隐式广义预测自校正算法的全局收敛性
第10章 预测控制的现状和发展前景
参考文献
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
本书是作者近年来从事预测控制――一类新型计算机控制算
法方面教学和科研工作的总结。全书深入浅出、系统地介绍了模型
算法控制(MAC)、动态矩阵控制(DMC)、广义预测控制(GPC)、广
义预测极点配置控制(GPP)等几种主要预测控制算法的基本原
理、设计方法、参数选择及闭环特性分析等,并且用内模控制结构
将各类预测控制算法统一起来,给出了它们的统一格式。此外,还
将预测控制与自适应控制结合起来,分析了自适应预测控制算法
的全局收敛性。全书突出理论联系实际,给出了8个工业应用实
例,实用性强,且内容新颖,条理清晰,反映了国内外预测控制的最
新成就。
本书适宜于从事电气自动化技术的工程技术人员阅读,也可
作为大专院校工业自动化、自动控制、计算机应用等专业的教材和
教学参考书。
网站评分
书籍多样性:3分
书籍信息完全性:6分
网站更新速度:9分
使用便利性:4分
书籍清晰度:4分
书籍格式兼容性:3分
是否包含广告:3分
加载速度:6分
安全性:5分
稳定性:6分
搜索功能:8分
下载便捷性:7分
下载点评
- 体验好(627+)
- 好评(373+)
- 格式多(257+)
- 全格式(90+)
- 引人入胜(230+)
- 无广告(420+)
- 排版满分(314+)
下载评价
- 网友 宫***凡:
一般般,只能说收费的比免费的强不少。
- 网友 沈***松:
挺好的,不错
- 网友 冷***洁:
不错,用着很方便
- 网友 寿***芳:
可以在线转化哦
- 网友 郗***兰:
网站体验不错
- 网友 居***南:
请问,能在线转换格式吗?
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 邱***洋:
不错,支持的格式很多
- 网友 宫***玉:
我说完了。
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 索***宸:
书的质量很好。资源多
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
喜欢"预测控制系统及其应用/电气自动化新技术丛书"的人也看了
集装箱运输管理(第2版物流管理专业高等职业院校国家技能型紧缺人才培养工程规划教材) 王鸿鹏 mobi 下载 网盘 caj lrf pdf txt 阿里云
麦迪熊经典节日校园小报板报墙报精品手抄本 mobi 下载 网盘 caj lrf pdf txt 阿里云
大头鱼海洋清洁记儿童绘本幼儿环保意识培养启蒙早教书精装硬壳幼儿园阅读3-6岁宝宝睡前故事亲子读物麦克米伦世纪办法总比困难多 mobi 下载 网盘 caj lrf pdf txt 阿里云
正版 人间失格 太宰治 著 小岩井 译 太宰治著残酷而永恒的青春文学 畅销经典外国小说书籍 外国小说书籍 畅销书籍正版 mobi 下载 网盘 caj lrf pdf txt 阿里云
管理信息系统 吉林大学出版社赵雪 9787567730823新书正版任选 mobi 下载 网盘 caj lrf pdf txt 阿里云
中国礼制史 隋唐五代卷 陈戍国【正版图书】 mobi 下载 网盘 caj lrf pdf txt 阿里云
【新华书店自营】成功备孕超简单 mobi 下载 网盘 caj lrf pdf txt 阿里云
断头台 mobi 下载 网盘 caj lrf pdf txt 阿里云
企业内部会计制度设计 (平装) mobi 下载 网盘 caj lrf pdf txt 阿里云
9787511527479 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 正版 蝙蝠侠手记:超人类绝密档案 DC英雄解谜 蝙蝠侠笔记本 科学幻想小说 正版畅销书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 细胞工程(第二版) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 正版基金投资入门与实战技巧投资理财书籍零基础新手投基指南技巧选择成长股学习聪明人是怎样用钱赚钱的股票理念理财工具书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 时评中国4 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 跨媒体移动应用理论与实践 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 春梦六讲 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 这就是生物(函套9册,5-12岁,米莱童书,这就是系列新作,孩子一看就懂的漫画生物大百科,科普+番外+知识+应用,让科学走进孩子的兴趣世界) mobi 下载 网盘 caj lrf pdf txt 阿里云
- Lockdown mobi 下载 网盘 caj lrf pdf txt 阿里云
- 是谁呢?/可以玩的儿童百科书 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 低卡减脂轻食料理 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:6分
人物塑造:5分
主题深度:6分
文字风格:6分
语言运用:6分
文笔流畅:3分
思想传递:4分
知识深度:6分
知识广度:5分
实用性:9分
章节划分:5分
结构布局:5分
新颖与独特:8分
情感共鸣:4分
引人入胜:9分
现实相关:6分
沉浸感:8分
事实准确性:8分
文化贡献:7分