生物信息学课程导引 mobi 下载 网盘 caj lrf pdf txt 阿里云

生物信息学课程导引电子书下载地址
内容简介:
本书根据清华大学承办的全国生物信息学暑期学校课程,高度概括地介绍了与生物信息学研究紧密相关的11门基础课程和15个前沿专题报告。全书分12章,包括: 生物信息学引论、生物信息学中的基础统计、计算基因组学专题、生物信息学中的高级统计、计算生物学算法基础、生物信息学中的多元统计、人类疾病关联研究方法与实例、生物信息学中的数据挖掘与知识发现、生物信息学应用工具、蛋白质结构与功能基础、中医药研究的计算系统生物学方法、生物信息学与计算系统生物学前沿等。本书不仅可以作为生物信息学初学者的入门读物,还可作为生物信息学领域专业研究人员高度概括而又不失系统性的参考书籍。
书籍目录:
1 BasicsforBioinfbrmatics.
Xuegong Zhang,Xueya Zhou,and Xiaowo Wang
1.1 WhatIs l3;ioinformatics
1.2 SomeBasicBiology
1.2.1 Scale andTime.
1.2.2 Cells.
1.2.3 DNA and Chromosome
1.2.4 TheCen~a1Dogma.
1.2.5 GenesandtheGenome.一
1.2.6 Measurements Along the Central Dogma
1.2.7 DNA Sequencing一
1.2.8 Transcriptomics and DNA Microarrays
1.2.9 Proteomics and Mass Spectrometry.
1.2.10 ChIP-Chip andChIP.Seq
1.3 ExampleTopicsofBioinformatics
1.3.1 Examples of Algorithmatic Topics
1.3.2 ExamplesofStatisticalTopics.
1.3.3 Machine Learning and Pattern
RecognitionExamples
1.3.4 Basic Principles ofGenetics.
Re:fe:rences
2 Basic StatisticsforBioinformatics.
Yuanlie Lin and Rui Jiang
2.1 Introduction.
2.2 Foundati***ofStatistics
2.2.1 Probabilities
2.2.2 RandomVariables
2.2.3 Multiple Random Variables
2.2.4 Distributi***.
2.2.5 random sampling.
2.2.6 suf.cientstatistics
2.3 point estimation
2.3.1 method of moments.
2.3.2 maximum likelihoodestimators
2.3.3 bayes estimators
2.3.4 mean squared error.
2.4 hypothesistesting
2.4.1 likelihood ratio tests
2.4.2 errorprobabilitiesandthepowerfunction
2.4.3 p-values
2.4.4 some widely used tests
2.5 intervalestimation
2.6 ***ysis of variance
2.6.1 one-way ***ysis of variance.
2.6.2 two-way***ysisofvariance.
2.7 regression models
2.7.1 *** linear regression.
2.7.2 logistic regression
2.8 statisticalcomputingenvironments.
2.8.1 downloadingand installation
2.8.2 storage, input, and outputof data.
2.8.3 distributi***.
2.8.4 hypothesis testing
2.8.5 anova and linear model
references
3 topics in computational genomics 69 michael q. zhang and andrew d. smith
3.1 overview:genomeinformatics
3.2 finding protein-codinggenes.
3.2.1 how to identifya coding exon
3.2.2 how to identifya gene with multiple ex***
3.3 identifyingpromoters.
3.4 genomic arraysand acgh/cnp ***ysis
3.5 introduction on computational ***ysis of transcriptionalgenomicsdata
3.6 modelingregulatory elements
3.6.1 word-based representati***
3.6.2 thematrix-basedrepresentation
3.6.3 other representati***.
3.7 predicting transcriptionfactor binding sites.
3.7.1 the multinomial model for describing sequences
3.7.2 scoring matrices and searching sequences
3.7.3 algorithmic techniques for identifying high-scoringsites
3.7.4 measuring statistical signi.cance of matches
3.8 modelingmotif enrichmentin sequences
3.8.1 motif enrichmentbased on likelihoodmodels.
3.8.2 relative enrichment between two sequence sets
3.9 phylogeneticc***ervationof regulatoryelements
3.9.1 three strategies for identifying c***erved binding sites
3.9.2 c***iderati***when using phylogeneticfootprinting
3.10 motif discovery.
3.10.1 word-basedandenumerativemethods
3.10.2 general statistical algorithms applied to motif discovery
3.10.3 expectationmaximization
3.10.4 gibbs sampling
references
4 statistical methods in bioinformatics 101 jun s. liu and bo jiang
4.1 introduction
4.2 basics of statistical modeling and bayesian inference.
4.2.1 bayesian method with examples.
4.2.2 dynamic programmingand hidden markovmodel
4.2.3 metropolis-hastingsalgorithm and gibbs sampling
4.3 gene expressionand microarray***ysis
4.3.1 low-level processing and differential expression identi.cation
4.3.2 unsupervised learning
4.3.3 dimensionreductiontechniques
4.3.4 supervised learning
4.4 sequencealignment
4.4.1 pair-wise sequence ***ysis.
4.4.2 multiple sequence alignment
4.5 sequence pattern discovery
4.5.1 basic models and approaches
4.5.2 gibbsmotifsampler
4.5.3 phylogenetic footprinting method and the identi.cation of cis-regulatorymodules.
4.6 combining sequence and expression information for ***yzing transcriptionregulation
4.6.1 motifdiscoveryinchip-arrayexperiment.
4.6.2 regression ***ysis of transcriptionregulation
4.6.3 regulatoryroleofhistonemodi.cation
4.7 protein structure and proteomics
4.7.1 protein structure prediction
4.7.2 protein chip data ***ysis.
references
5 algorithms in computational biology . 151 tao jiang and jianxing feng
5.1 introduction
5.2 dynamic programmingand sequence alignment
5.2.1 the paradigm of dynamic programming
5.2.2 sequence alignment
5.3 greedy algorithmsfor genome rearrangement
5.3.1 genome rearrangements
5.3.2 breakpoint graph, greedy algorithm and approximationalgorithm 159 references
6 multivariate statistical methods in bioinformatics research . 163 lingsongzhang and xihong lin
6.1 introduction
6.2 multivariate normal distribution
6.2.1 de.nition and notation
6.2.2 properties of the multivariate normal distribution
6.2.3 bivariate normal distribution
6.2.4 wishart distribution.
6.2.5 sample mean and covariance
6.3 one-sampleand two-sample multivariate hypothesis tests
6.3.1 one-sample t test for a univariate outcome
6.3.2 ***elling's t2 test for the multivariate outcome
6.3.3 properties of ***elling'st2 test.
6.3.4 paired multivariate ***elling's t2 test
6.3.5 examples
6.3.6 two-sample***elling's t2 test
*** principalcomponent***ysis.
***.1 de.nition of principal components
***.2 computing principalcomponents
***.3 variance decomposition
***.4 pcawithacorrelationmatrix.
***.5 geometricinterpretation
***.6 choosing the numberof principal components
***.7 diabetes microarraydata.
6.5 factor ***ysis
6.5.1 orthogonalfactor model
6.5.2 estimating the parameters
6.5.3 an example
6.6 linear discriminant ***ysis
6.6.1 two-grouplinear discriminant ***ysis.
6.6.2 an example
6.7 classi.cation methods
6.7.1 introductionof classi.cation methods
6.7.2 k-nearestneighbormethod
6.7.3 density-basedclassi.cationdecisionrule.
6.7.4 quadraticdiscriminant***ysis.
6.7.5 logistic regression
6.7.6 ***vector machine
6.8 variableselection.
6.8.1 linear regression model
6.8.2 motivation for variable selection
6.8.3 traditionalvariableselectionmethods
6.8.4 regularization and variable selection
6.8.5 summary
references
7 association ***ysis for human diseases: methods and examples . 233 jurg ott and qingrunzhang
7.1 whydoweneedstatistics.
7.2 basic concepts in population and quantitative genetics.
7.3 genetic linkage***ysis
7.4 geneticcase-controlassociation***ysis.
7.4.1 basic steps in an association study
7.4.2 multiple testing correcti***
7.4.3 multi-locusapproaches
7.5 discussion.
references
8 data mining and knowledge discovery methods with case examples
s. bandyopadphyayand u. maulik
8.1 introduction
8.2 different tasks in data mining
8.2.1 classi.cation
8.2.2 clustering
8.2.3 discoveringassociati***.
8.2.4 issues and challengesin data mining
8.3 some commontools and techniques.
8.3.1 arti.cial neural networks
8.3.2 fuzzy sets and fuzzy logic
8.3.3 genetic algorithms
8.4 case examples
8.4.1 pixelclassi.cation
8.4.2 clustering of satellite images
8.5 discussionandconclusi***
references
9 applied bioinformatics tools 271 jingchu luo
9.1 introduction
9.1.1 welcome.
9.1.2 about this web site
9.1.3 outline
9.1.4 lectures
9.1.5 exercises.
9.2 entrez
9.2.1 pubmed query
9.2.2 entrez query
9.2.3 my ncbi
9.3 expasy
9.3.1 swiss-prot query
9.3.2 explore the swiss-prot entry hba human.
9.3.3 database query with the ebi srs
9.4 sequencealignment
9.4.1 pairwise sequence alignment
9.4.2 multiple sequence alignment
9.4.3 blast
9.5 dna sequence ***ysis
9.5.1 gene structure ***ysis and prediction
9.5.2 sequencecomposition
9.5.3 secondarystructure.
9.6 protein sequence ***ysis
9.6.1 primary structure
9.6.2 secondarystructure.
9.6.3 transmembranehelices
9.*** helical wheel
9.7 motif search
9.7.1 smart search
9.7.2 memesearch.
9.7.3 hmm search
9.7.4 sequence logo
9.8 phylogeny
9.8.1 protein
9.8.2 dna
9.9 projects
9.9.1 sequence, structure, and function ***ysis of the bar-headed goose hemoglobin.
9.9.2 exercises.
9.10 li***ture
9.10.1 courses and tutorials
9.10.2 scienti.c stories
9.10.3 free journalsand books
9.11 bioinformaticsdatabases
9.11.1 list of databases
9.11.2 database query systems
9.11.3 genome databases
9.11.4 sequencedatabases.
9.11.5 proteindomain,family,andfunctiondatabases.
9.11.6 structure databases
9.12 bioinformaticstools
9.12.1 list of bioinformatics tools at international bioinformaticscenters
9.12.2 web-basedbioinformaticsplatforms
9.12.3 bioinformatics packages to be downloaded and installed locally
9.13 sequence ***ysis
9.13.1 dotplot.
9.13.2 pairwise sequence alignment
9.13.3 multiple sequence alignment
9.13.4 motif finding
9.13.5 gene identi.cation
9.13.6 sequence logo
9.13.7 rna secondary structure prediction
9.14 database search.
9.14.1 blast search
9.14.2 other database search
9.15 molecular modeling
9.15.1 visualizationandmodelingtools
9.15.2 protein modelingweb servers
9.16 phylogenetic***ysisandtreec***truction.
9.16.1 list of phylogenyprograms
9.16.2 online phylogenyservers
9.16.3 phylogenyprograms
9.1*** displayofphylogenetictrees
references
10 foundati*** for the study of structure and function of proteins 303 zhirongsun
10.1 introduction
10.1.1 importanceof protein.
10.1.2 amino acids, peptides, and proteins.
10.1.3 some noticeable problems
10.2 basic concept of protein structure
10.2.1 different levels of protein structures
10.2.2 acting force to sustain and stabilize the high-dimensionalstructure of protein
10.3 fundamentalof macromoleculesstructuresand functi***
10.3.1 differentlevelsofproteinstructure.
10.3.2 primary structure
10.3.3 secondarystructure.
10.3.4 supersecondarystructure.
10.3.5 folds
10.3.6 summary
10.4 basis of protein structure and function prediction
10.4.1 overview
10.4.2 the signi.cance of protein structure prediction
10.4.3 the field of machine learning.
10.4.4 homological protein structure prediction method
10.4.5 abinitiopredictionmethod
reference.
11 computational systems biology approaches for deciphering traditional chinese medicine 337 shao li and le lu
11.1 introduction
11.2 disease-related network.
11.2.1 fromagenelisttopathwayandnetwork
11.2.2 c***truction of disease-related network.
11.2.3 biological network modularity and phenotypenetwork.
11.3 tcm zheng-related network
11.3.1 "zheng" in tcm
11.3.2 acsb-basedcasestudyfortcmzheng
11.4 network-based study for tcm "fu fang"
11.4.1 systems biology in drug discovery
11.4.2 network-based drug design
11.4.3 progresses in herbal medicine
11.4.4 tcm fu fang (herbal formula)
11.4.5 a network-based case study for tcm fu fang
references
12 advanced topics in bioinformatics and computational biology . 369 bailin hao, chunting zhang, yixue li, hao li, liping wei, minoru kanehisa, luhualai, runsheng chen, nikolaus rajewsky, michael q. zhang, jingdonghan, rui jiang, xuegong zhang, and yanda li
12.1 prokaryotephylogenymeets taxonomy
12.2 z-curve method and its applicati*** in ***yzing eukaryoticand prokaryotic genomes
12.3 insights into the coupling of duplication events and macroevolution from an age pro.le of transmembranegene families
12.4 evolution of combinatorial transcriptional circuits inthefungallineage.
12.5 can a non-synonymous single-nucleotide polymorphism (nssnp) affect protein function ***ysis from sequence, structure, and enzymatic assay
12.6 bioinformatics methods to integrate genomic andchemicalinformation
12.7 from structure-based to system-based drug design
12.8 progressin the study of noncodingrnas in c. elegans
12.9 identifyingmicrornas and their targets
12.10 topics in computationalepigenomics
12.11 understanding biological functi*** through molecular networks
12.12 identi.cationof network motifs in random networks
12.13 examples of pattern recognition applicati***in bioinformatics.
12.14 c***iderati***in bioinformatics
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:6分
书籍信息完全性:9分
网站更新速度:9分
使用便利性:9分
书籍清晰度:9分
书籍格式兼容性:3分
是否包含广告:3分
加载速度:4分
安全性:8分
稳定性:6分
搜索功能:5分
下载便捷性:7分
下载点评
- 服务好(230+)
- 愉快的找书体验(425+)
- 实惠(180+)
- 品质不错(594+)
- 快捷(249+)
- 目录完整(277+)
- 排版满分(139+)
下载评价
- 网友 堵***洁:
好用,支持
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 温***欣:
可以可以可以
- 网友 敖***菡:
是个好网站,很便捷
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 宫***玉:
我说完了。
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 扈***洁:
还不错啊,挺好
- 网友 索***宸:
书的质量很好。资源多
- 网友 田***珊:
可以就是有些书搜不到
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 国***芳:
五星好评
喜欢"生物信息学课程导引"的人也看了
Pro/ENGINEER 5.0 实用教程 mobi 下载 网盘 caj lrf pdf txt 阿里云
塑料配方大全 mobi 下载 网盘 caj lrf pdf txt 阿里云
太空地图 火星月球太阳系宇宙共4张 太空知识科普读物 6-15岁青少年太空探索读物 宇宙星空揭秘天文百科课外读物中小学生科普读物自营同款 mobi 下载 网盘 caj lrf pdf txt 阿里云
品牌思维:世界一线品牌的7大不败奥秘 沃尔夫冈·谢弗(Wolfgang chae【无忧售后 放心购买】 mobi 下载 网盘 caj lrf pdf txt 阿里云
走在企业管理前沿 mobi 下载 网盘 caj lrf pdf txt 阿里云
自由秩序原理【正版图书】 mobi 下载 网盘 caj lrf pdf txt 阿里云
你好,我是爱因斯坦 mobi 下载 网盘 caj lrf pdf txt 阿里云
2010全国一级注册结构工程师执业资格考试全真模拟冲刺试题及详解(基础部分) mobi 下载 网盘 caj lrf pdf txt 阿里云
龙腾版-英语阅读理解与完形填空周计划(中考冲刺)(附赠价值20元沪江网校学习卡) mobi 下载 网盘 caj lrf pdf txt 阿里云
中华人民***国农村土地承包法实用问答 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 【正版新书】 叶甫盖尼·奥涅金珍藏版 外国小说 作品兼具诗歌的抒情性和小说跌岩起伏的叙 事性,真实地展现了***秀美的自然 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 心理学导论——思想与行为的认识之路 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 纳米金属氧化物及其铝热剂 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 为青春念书:中学生留美亲历实录 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 英语多功能词典(*版) mobi 下载 网盘 caj lrf pdf txt 阿里云
- CAXA CAM数控车削加工自动编程经典实例 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 职称英语历年真题及仿真试卷3+2+1 卫生类(适用于ABC级) 第2版 mobi 下载 网盘 caj lrf pdf txt 阿里云
- Vue.js应用测试 (英)埃德·耶伯格(Edd Yerburgh) 著 李宏凯,李冬梅 译 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 宋词三百首 足本 大字版 文白对照 锁线 中华传统文化古典名著 国学经典书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 大脑历险记 (英)丹·格林(Dan Green) 著;(英)肖恩·西姆斯(Sean Sims) 绘;曹雪春 译 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:7分
人物塑造:9分
主题深度:7分
文字风格:6分
语言运用:5分
文笔流畅:5分
思想传递:6分
知识深度:3分
知识广度:7分
实用性:5分
章节划分:6分
结构布局:7分
新颖与独特:6分
情感共鸣:9分
引人入胜:5分
现实相关:4分
沉浸感:4分
事实准确性:9分
文化贡献:8分