磁性材料的新巡游电子模型(英文版) mobi 下载 网盘 caj lrf pdf txt 阿里云

磁性材料的新巡游电子模型(英文版)电子书下载地址
内容简介:
《磁性材料的新巡游电子模型(英文版)》介绍几个长期困扰磁学界的难题,以及探索解决这些难题的一套全新磁性材料磁有序模型体系,包括关于典型磁性氧化物的巡游电子模型、关于典型磁性金属的新巡游电子模型,以及涵盖典型磁性金属和氧化物的磁有序能来源的外斯电子对模型。应用这三个模型研究典型磁性材料,不仅可以解释利用传统模型可以解释的实验现象,对一些长期困扰磁学界的难题也给出了合理解释。这三个模型的物理意义清晰,对于理解磁性材料的磁有序现象和设计新型磁性材料将有所帮助。
书籍目录:
Contents
1 Introduction 1
References 3
2 Electron Shell Structure of Free Atoms and Valence Electr*** in Crystals 5
2.1 Electron Shell Structure of Free Atoms 5
2.2 A Simple Introduction to Classical Crystal Binding Theory for Typical Magnetic Materials 6
2.3 Effective Radii of I*** in Crystals 8
2.4 Electron Binding Energy Originating from I*** in Crystals 9
References 11
3 A Simple Introduction to Basic Knowledge of Magnetic Materials 13
3.1 Classification of Matter Based on Magnetic Properties 13
3.2 Magnetic Domain and Domain Wall 16
3.3 Basic Parameters of Magnetic Materials 18
3.4 Magnetic Ordering Models in Conventional Ferromagnetism 21
References 24
4 Difficulties Faced by Conventional Magnetic Ordering Models 25
4.1 Disputes Over the Cation Distributi*** in Mn and Cr Spinel Ferrites 25
4.1.1 Normal, Inverse, and Mixed Spinel Structure 25
4.1.2 Magnetic Moments of 3d Transition Metal I*** 27
4.1.3 Magnetic Ordering of CrFe204 and MnFe204 27
4.2 Difficulties in Describing the Observed Magnetic Moments of Perovskite Manganites 31
4.3 Relati***hip Between Magnetic Moment and Resistivity in Typical Magnetic Metals 38
4.4 Puzzle for the Origin of Magnetic Ordering Energy 38
References 39
5 02p Itinerant Electron Model for Magnetic Oxides 43
5.1 A Simple Introduction to Early Investigati*** of Ionicity 43
5.2 Study of the Ionicity of Spinel Ferrites 45
5.2.1 Quantum-Mechanical Potential Barrier Model Used to Estimate Cation Distributi*** 46
5.2.2 Study of the Ionicity of Group II-VI Compounds Using the Quantum-Mechanical Potential Barrier Model 47
5.2.3 Study of Ionicity of Spinel Ferrite Fe3o4 48
5.2.4 Estimation of the Ionicity of Spinel Ferrites M3O4 Using the Quantum- Mechanical Potential Barrier Model 50
5.3 Experimental Studies of O 2p Holes in Oxides 51
5.3.1 O 2p Hole Studies Using Electron Energy Loss Spectroscopy 52
5.3.2 Several Other Experimental Investigati*** for O 2p Holes 54
5.4 Study of Negative Monovalent Oxygen I*** Using X-Ray P***oelectron Spectra 54
5.4.1 Study of Ionicity of BaTiC>3 and Several Monoxides Using O Is XPS 55
5.4.2 Effect of Argon Ion Etching on the O Is P***oelectron Spectra of SrTio3 60
5.5 O 2p Itinerant Electron Model for Magnetic Oxides (IEO Model) 70
5.6 Relati***hip Between the IEO Model and the Conventional Models 75
References 79
6 Magnetic Ordering of Typical Spinel Ferrites 81
6.1 Method Fitting Magnetic Moments of Typical Spinel Ferrites 81
6.1.1 X-ray Diffraction Analysis 82
6.1.2 Magnetic Property Measurements 84
6.1.3 Primary Factors that Affect Cation Distributi*** 85
6.1.4 Fitting the Magnetic Moments of the Samples 88
6.1.5 Discussion on Cation Distributi*** 91
6.2 Cation Distribution Characteristics in Typical Spinel Ferrites 94
References 100
7 Experimental Evidences of the IEO Model Obtained from Spinel Ferrites 101
7.1 Additional Antiferromagnetic Phase in Ti-Doped Spinel Ferrites 101
7.1.1 X-ray Diffraction Spectra of the Samples 102
7.1.2 X-ray Energy Dispersive Spectra of the Samples 104
7.1.3 Magnetic Measurements and Analysis of the Results 106
7.1.4 Cation Distributi*** of the Three Series of Ti-Doped Samples 108
7.1.5 Magnetic Ordering of Spinel Ferrites TicM1_xFe204 (M = Co, Mn) 115
7.2 Amplification of Spinel Ferrite Magnetic Moment Due to Cu Substituting for Cr 116
7.2.1 X-ray Energy Dispersive Spectrum Analysis 116
7.2.2 X-ray Diffraction Analysis 117
7.2.3 Magnetic Measurement and Magnetic Moment Fitting Results 118
7.3 Unusual Infrared Spectra of Cr Ferrite 122
7.3.1 Infrared Spectra of Spinel Ferrites M¥q2Oa (M=Fe, Co, Ni, Cu, Cr) 123
7.3.2 Dependency of the Peak Position V2 on the Magnetic Moment (Xm2) of Divalent M Cati*** in MFe2O4(M= Fe, Co, Ni, Cu, Cr) 125
7.3.3 Infrared Spectra of and CoCrxFe2-x04 126
References 126
8 Spinel Ferrites with Canted Magnetic Coupling 129
8.1 Spinel Ferrites with Fe Ratio Being Less Than 2.0 Per Molecule 129
8.2 Spinel Ferrites Containing Nonmagnetic Cati*** 132
8.2.1 Disputation of Nonmagnetic Cation Distribution 133
8.2.2 Fitting Sample Magnetic Moments 136
8.2.3 Discussion on Cation Distributi*** 137
References 145
9 Magnetic Ordering and Electrical Transport of Perovskite Manganites 147
9.1 Ferromagnetic and Antiferromagnetic Coupling in Typical Perovskite Manganites 147
9.1.1 Crystal Structure and Magnetic Measurement Results of Lai-xSrxMnOs Polycrystalline Powder Samples 147
9.1.2 Study of Valence and Ionicity of Lai-xSrxMn03 150
9.1.3 Fitting of the Curve of the Magnetic Moment Versus Sr Ratio for Lai-xSrxMn03 152
9.2 Spin-Dependent and Spin-Independent Electrical Transport of Perovskite Manganites 155
9.2.1 A Model with Two Channels of Electrical Transport for ABO3 Perovskite Manganites 156
9.2.2 Fitting the Curves of Resistivity Versus Test Temperature o
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1 Introduction
One of the oldest applicati*** of magnetic materials is the use of compass. In modem times, the applicati*** of magnetic materials have benefited many fields, such as aviation, spaceflight,military affairs, radio, television, communication, and medicine, in the form of magnetic memory devices, magnets, transformers, and microwave devices.
However, some of the challenging problems on magnetic ordering phenomena have not been reasonably explained because of the lack of phenomenological expression of the magnetic ordering energy, or the energy of the Weiss molecular field. In 1907, Weiss proposed the presence of small regi*** in magnetic materials called magnetic domains. In each magnetic domain, atomic magnetic moments arrange in a certain order subjected to a “molecular field”. Magnetic domains have been observed in many experimental studies. However, the origin of the molecular field is yet to be explained satisfactorily.
Several different models for the magnetic ordering mechanism were introduced in the textbooks [14],including phenomenological spontaneous magnetization theory, exchange in***ction theory for spontaneous magnetization, spin-wave theory, and metal energy band theory. These theories are based on different assumpti*** and rely on different theoretical systems. Since they fail to explain several experimental phenomena, developing ferromagnetism theory is challenging.
In classical ferromagnetism, the origin of magnetic ordering energy was explained by using exchange in***cti*** of electr*** between i***, called direct exchange in***ction in magnetic metals and alloys, superexchange (SE) in***ction for the anti?ferromagnetic coupling between magnetic cati*** in an oxide, and double-exchange (DE) in***ction for the ferromagnetic coupling between magnetic cati*** in an oxide. Because nearly a thousand times difference for magnetic ordering energy between estimated (using the Curie temperature) and calculated (using classical electromagnetism model) values exist, the origin of magnetic ordering energy is c***idered to be a pure quantum-mechanical effect, independent of the classical electromagnetism model. However, magnetic material calculation using the density functional theory (DFT) based on quantum mechanics is challenging because the expression to calculate the magnetic ordering energy has not been developed.
No report has addressed the valence electron spectrum when the classical ferro?magnetism models were proposed before 1960. Since the 1970s, many studies have reported electron spectra of magnetic materials,and an improved understanding of the electrical transport mechanism for magnetic perovskite manganites was provided.
The magnetic DE in***ction was firstly used to explain the ferromagnetic coupling between Mn cati*** in ABO3 perovskite manganites, in particular, Lai_xSrxMn03. In the classical view [5,6], all oxygen ani*** are assumed to be O2- in these materials. With increasing Sr2 ratio (jc), an equal number of Mn4+ i*** exist in the system. The DE in***ction of 3d electr*** between Mn3+ and Mn4+ i*** mediated by O2- i***, was used to explain the magnetic ordering and the electrical transport phenomena in Lai_xSrxMn03.
However, based on the electron energy loss spectra and other electron spectrum experimental results, Alexandrov et al. [7] pointed out that the DE model contradicts these experimental results, which clearly showed that the current carriers are oxygen p ***s rather than d electr*** of ferromagnetic manganites. Studies have shown that O1- i*** may c***titute 30% or more of oxygen i*** in oxides. The outer electron shell of an O1- ion exists ap ***, which affects the magnetic and electrical transport properties of oxides. In fact, the effect of oxygen p ***s was accurately c***idered in the investigation of superconductor oxides [8] but has not been widely accepted in studies concerning magnetic oxides.
Our group cooperated with Professors Wu and Hu of State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, and published a series of articles about the new magnetic ordering models, including a review article in Physics Reports [9] titled “Three models of magnetic ordering in typical magnetic materials”. These models include an O 2p itinerant electron model for magnetic oxides (IEO model) [10,11], a new itinerant electron model for magnetic metals (IEM model) [12],and a Weiss electron-pair (WEP) model for the origin of magnetic ordering energy [13]. By using the IEO model that replaces the SE and DE models, the magnetic structures of not only Co-, Ni-,or Cu-doped spinel ferrites but also Cr-, Mn-, or Ti-doped spinel ferrites could be explained, moreover, the dependence of the magnetic moments on the Sr ratio in perovskite manganites (such as Lai_文SrxMno3) can be explained, fo***hich there have been many ongoing disputes regarding the cation distributi*** of these materials
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
《磁性材料的新巡游电子模型(英文版)》介绍几个长期困扰磁学界的难题,以及探索解决这些难题的一套全新磁性材料磁有序模型体系,包括关于典型磁性氧化物的巡游电子模型、关于典型磁性金属的新巡游电子模型,以及涵盖典型磁性金属和氧化物的磁有序能来源的外斯电子对模型。应用这三个模型研究典型磁性材料,不仅可以解释利用传统模型可以解释的实验现象,对一些长期困扰磁学界的难题也给出了合理解释。这三个模型的物理意义清晰,对于理解磁性材料的磁有序现象和设计新型磁性材料将有所帮助。
网站评分
书籍多样性:5分
书籍信息完全性:9分
网站更新速度:5分
使用便利性:9分
书籍清晰度:4分
书籍格式兼容性:8分
是否包含广告:3分
加载速度:9分
安全性:9分
稳定性:8分
搜索功能:4分
下载便捷性:3分
下载点评
- 傻瓜式服务(93+)
- 情节曲折(169+)
- 中评(534+)
- epub(575+)
- 盗版少(83+)
- 下载速度快(466+)
- 五星好评(498+)
- 还行吧(340+)
- 全格式(441+)
- 一般般(341+)
- 愉快的找书体验(125+)
下载评价
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 冯***丽:
卡的不行啊
- 网友 习***蓉:
品相完美
- 网友 戈***玉:
特别棒
- 网友 蓬***之:
好棒good
- 网友 寿***芳:
可以在线转化哦
- 网友 邱***洋:
不错,支持的格式很多
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 堵***格:
OK,还可以
- 网友 常***翠:
哈哈哈哈哈哈
喜欢"磁性材料的新巡游电子模型(英文版)"的人也看了
2024新版小橙同学寒假衔接一本通五年级上册语文+数学+英语寒假作业人教版337晨读科学记忆法期末总复习寒假衔接练习册 mobi 下载 网盘 caj lrf pdf txt 阿里云
鸡足山志 mobi 下载 网盘 caj lrf pdf txt 阿里云
毕淑敏给孩子的心灵成长绘本(第二辑):小语送温暖(神秘岛) mobi 下载 网盘 caj lrf pdf txt 阿里云
紫牛:从默默无闻到与众不同 [美] 高汀 著,施诺 译 中信出版社【正版书】 mobi 下载 网盘 caj lrf pdf txt 阿里云
24学霸同步笔记初中道德与法治八年级 pass绿卡 漫画图解讲例练统编版课堂笔记初二基础知识手册大全同步讲解真题训练速查速记 mobi 下载 网盘 caj lrf pdf txt 阿里云
9787544627566 德语听力教程(3学生用书新世纪 mobi 下载 网盘 caj lrf pdf txt 阿里云
【预订】Mental Illness in Ken Kesey's One Flew Over the Cuckoo's Nest mobi 下载 网盘 caj lrf pdf txt 阿里云
【【彩色图案注音版】动物世界 】 恐龙百科全书儿童版 注音版 幼儿绘本书籍精装硬壳珍藏版 关于侏罗纪世界王国认知科普介绍大全5-9岁小学生二年级课外书 mobi 下载 网盘 caj lrf pdf txt 阿里云
汉末群狼 mobi 下载 网盘 caj lrf pdf txt 阿里云
新春大吉(实用楷书写春联) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 即兴判断 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 鲸歌 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 生命博物 中小学动物趣味百科课外阅读 图说天下博物地球精装版 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 三氧化钨光催化剂制备及应用 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 巧用梦境、巧合和想象的力量 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 光之鹤 【正版图书】 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 英汉汉英体育词汇 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 正版 全国少儿声乐考级曲集(九级-十级)(附MP3光盘2张) 中国音乐家协会社会音乐水平考级教材正版 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 紫玉淳美 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 睡谷的传说(附光盘小学版适合小学阶段学生使用外研社点读书)/书虫牛津英汉双语读物 mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:3分
人物塑造:8分
主题深度:5分
文字风格:5分
语言运用:5分
文笔流畅:9分
思想传递:8分
知识深度:8分
知识广度:7分
实用性:6分
章节划分:8分
结构布局:8分
新颖与独特:3分
情感共鸣:8分
引人入胜:5分
现实相关:7分
沉浸感:3分
事实准确性:5分
文化贡献:7分