Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi 下载 网盘 caj lrf pdf txt 阿里云

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks")
Exercises based on data ***yses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proporti***
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standar***ng to What Standard?
2.3.5 Cauti*** with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projecti*** and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operati***
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Map***
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Ge***ia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendati***
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.*** Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functi***
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
*** Comparing Point Process Summaries
***.1 Goals
***.2 Assumpti*** and Typical Output
***.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
***.4 Method: Difference between K Functi***
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumpti*** and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proporti***
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumpti*** and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumpti***
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumpti*** and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumpti*** and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumpti*** and Typical Output
7.6.3 Method: Pearson’s χ2
7.*** Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related C***iderati***
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relati***hip to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observati***: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressi***
9.3.4 Concluding Remarks on Spatial Autoregressi***
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional C***iderati*** in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Ge***ia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Ge***ia. He received his PhD in Operati*** Research in 1992 from Cornell University. Dr. Walle***as named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks") Exercises based on data ***yses reinforce concepts
网站评分
书籍多样性:9分
书籍信息完全性:5分
网站更新速度:5分
使用便利性:5分
书籍清晰度:8分
书籍格式兼容性:6分
是否包含广告:5分
加载速度:4分
安全性:7分
稳定性:4分
搜索功能:6分
下载便捷性:5分
下载点评
- 无颠倒(308+)
- 体验满分(236+)
- azw3(308+)
- 微信读书(283+)
- 藏书馆(565+)
- 快捷(547+)
- 中评多(527+)
- 方便(263+)
- 推荐购买(250+)
- 下载快(135+)
- 赞(232+)
- 速度快(80+)
- 盗版少(571+)
下载评价
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 薛***玉:
就是我想要的!!!
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 步***青:
。。。。。好
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 冯***丽:
卡的不行啊
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
化学:高中三年级——世纪同步精练 mobi 下载 网盘 caj lrf pdf txt 阿里云
商务英语教程 国际商务谈判英语口语 刘道影,徐托 编 mobi 下载 网盘 caj lrf pdf txt 阿里云
当代大学生犯罪问题研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
9787542938794 mobi 下载 网盘 caj lrf pdf txt 阿里云
童年(精华版)/小学生领先一步读名著 mobi 下载 网盘 caj lrf pdf txt 阿里云
中公版·2018***政机关公开遴选***考试:综合基础知识1000题 mobi 下载 网盘 caj lrf pdf txt 阿里云
中国股票市场***交易的形成与识别研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
预售【外图台版】史海巡航:历史问学周记(上) / 许***云 三民 mobi 下载 网盘 caj lrf pdf txt 阿里云
三国群英谱 mobi 下载 网盘 caj lrf pdf txt 阿里云
销售就是搞定人心【可开电子发票】 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 五大贼王1落马青云 张海帆 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 全球化与价值*** mobi 下载 网盘 caj lrf pdf txt 阿里云
- 园林空间意境与营造类型学研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 满分训练设计 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 百年科幻-超侠小特工·第二季(全5册) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 沈石溪十二生肖故事 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 有困难我会说 我爱幼儿园小甜橙入园准备绘幼儿园入园准备3-4-5岁宝宝儿童绘阅读幼儿园早教书绘故事书幼儿园大班小班书籍 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 历史的转折——***中央在延安十三年正版新书 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 常识判断B知288条-全新升J( 货号:751152365003) mobi 下载 网盘 caj lrf pdf txt 阿里云
- 恐龙望远镜游戏小拼图(2) mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:9分
人物塑造:7分
主题深度:7分
文字风格:8分
语言运用:8分
文笔流畅:9分
思想传递:3分
知识深度:6分
知识广度:6分
实用性:8分
章节划分:5分
结构布局:8分
新颖与独特:9分
情感共鸣:6分
引人入胜:6分
现实相关:6分
沉浸感:5分
事实准确性:6分
文化贡献:8分