Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi 下载 网盘 caj lrf pdf txt 阿里云

Applied spatial statistics for public health data公共卫生数据应用空间分析精美图片
》Applied spatial statistics for public health data公共卫生数据应用空间分析电子书籍版权问题 请点击这里查看《

Applied spatial statistics for public health data公共卫生数据应用空间分析书籍详细信息

  • I***N:9780471387718
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2004-07
  • 页数:520
  • 价格:1006.70
  • 纸张:胶版纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

内容简介:

  While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.

This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field

Requires only minimal background in public health and only some knowledge of statistics through multiple regression

Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure

Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks")

Exercises based on data ***yses reinforce concepts


书籍目录:

Preface

Acknowledgments

1 Introduction

 1.1 Why Spatial Data in Public Health?

 1.2 Why Statistical Methods for Spatial Data?

 1.3 Intersection of Three Fields of Study

 1.4 Organization of the Book

2 Analyzing Public Health Data

 2.1 Observational vsExperimental Data

 2.2 Risk and Rates

  2.2.1 Incidence and Prevalence

  2.2.2 Risk

  2.2.3 Estimating Risk: Rates and Proporti***

  2.2.4 Relative and Attributable Risks

 2.3 Making Rates Comparable: Standardized Rates

  2.3.1 Direct Standardization

  2.3.2 Indirect Standardization

  2.3.3 Direct or Indirect?

  2.3.4 Standar***ng to What Standard?

  2.3.5 Cauti*** with Standardized Rates

 2.4 Basic Epidemiological Study Designs

  2.4.1 Prospective Cohort Studies

  2.4.2 Retrospective Case–Control Studies

  2.4.3 Other Types of Epidemiological Studies

 2.5 Basic Analytic Tool: The Odds Ratio

 2.6 Modeling Counts and Rates

  2.6.1 Generalized Linear Models

  2.6.2 Logistic Regression

  2.6.3 Poisson Regression

 2.7 Challenges in the Analysis of Observational Data

  2.7.1 Bias

  2.7.2 Confounding

  2.7.3 Effect Modification

  2.7.4 Ecological Inference and the Ecological Fallacy

 2.8 Additional Topics and Further Reading

 2.9 Exercises

3 Spatial Data

 3.1 Components of Spatial Data

 3.2 An Odyssey into Geodesy

  3.2.1 Measuring Location: Geographical Coordinates

  3.2.2 Flattening the Globe: Map Projecti*** and Coordinate Systems

  3.2.3 Mathematics of Location: Vector and Polygon Geometry

 3.3 Sources of Spatial Data

  3.3.1 Health Data

  3.3.2 Census-Related Data

  3.3.3 Geocoding

  3.3.4 Digital Cartographic Data

  3.3.5 Environmental and Natural Resource Data

  3.3.6 Remotely Sensed Data

  3.3.7 Digitizing

  3.3.8 Collect Your Own!

 3.4 Geographic Information Systems

  3.4.1 Vector and Raster GISs

  3.4.2 Basic GIS Operati***

  3.4.3 Spatial Analysis within GIS

 3.5 Problems with Spatial Data and GIS

  3.5.1 Inaccurate and Incomplete Databases

  3.5.2 Confidentiality

  3.5.3 Use of ZIP Codes

  3.5.4 Geocoding Issues

  3.5.5 Location Uncertainty

4 Visualizing Spatial Data

 4.1 Cartography: The Art and Science of Map***

 4.2 Types of Statistical Maps

  MAP STUDY: Very Low Birth Weights in Ge***ia Health Care District 9

  4.2.1 Maps for Point Features

  4.2.2 Maps for Areal Features

 4.3 Symbolization

  4.3.1 Map Generalization

  4.3.2 Visual Variables

  4.3.3 Color

 4.4 Mapping Smoothed Rates and Probabilities

  4.4.1 Locally Weighted Averages

  4.4.2 Nonparametric Regression

  4.4.3 Empirical Bayes Smoothing

  4.4.4 Probability Mapping

  4.4.5 Practical Notes and Recommendati***

  CASE STUDY: Smoothing New York Leukemia Data

 4.5 Modifiable Areal Unit Problem

 4.6 Additional Topics and Further Reading

  4.6.1 Visualization

  4.6.2 Additional Types of Maps

  4.6.3 Exploratory Spatial Data Analysis

  4.*** Other Smoothing Approaches

  4.6.5 Edge Effects

 4.7 Exercises

5 Analysis of Spatial Point Patterns

 5.1 Types of Patterns

 5.2 Spatial Point Processes

  5.2.1 Stationarity and Isotropy

  5.2.2 Spatial Poisson Processes and CSR

  5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods

  5.2.4 Heterogeneous Poisson Processes

  5.2.5 Estimating Intensity Functi***

  DATA BREAK: Early Medieval Grave Sites

5.3 K Function

  5.3.1 Estimating the K Function

  5.3.2 Diagnostic Plots Based on the K Function

  5.3.3 Monte Carlo Assessments of CSR Based on the K Function

  DATA BREAK: Early Medieval Grave Sites

  5.3.4 Roles of First- and Second-Order Properties

 5.4 Other Spatial Point Processes

  5.4.1 Poisson Cluster Processes

  5.4.2 Contagion/Inhibition Processes

  5.4.3 Cox Processes

  5.4.4 Distinguishing Processes

 5.5 Additional Topics and Further Reading

 5.6 Exercises

6 Spatial Clusters of Health Events: Point Data for Cases and Controls

 6.1 What Do We Have? Data Types and Related Issues

 6.2 What Do We Want? Null and Alternative Hypotheses

 6.3 Categorization of Methods

 *** Comparing Point Process Summaries

  ***.1 Goals

  ***.2 Assumpti*** and Typical Output

  ***.3 Method: Ratio of Kernel Intensity Estimates

  DATA BREAK: Early Medieval Grave Sites

 ***.4 Method: Difference between K Functi***

  DATA BREAK: Early Medieval Grave Sites

 6.5 Scanning Local Rates

  6.5.1 Goals

  6.5.2 Assumpti*** and Typical Output

  6.5.3 Method: Geographical Analysis Machine

  6.5.4 Method: Overlapping Local Case Proporti***

  DATA BREAK: Early Medieval Grave Sites

 6.5.5 Method: Spatial Scan Statistics

  DATA BREAK: Early Medieval Grave Sites

 6.6 Nearest-Neighbor Statistics

  6.6.1 Goals

  6.6.2 Assumpti*** and Typical Output

  6.6.3 Method: q Nearest Neighbors of Cases

  CASE STUDY: San Diego Asthma

 6.7 Further Reading

 6.8 Exercises

7 Spatial Clustering of Health Events: Regional Count Data

 7.1 What Do We Have and What Do We Want?

  7.1.1 Data Structure

  7.1.2 Null Hypotheses

  7.1.3 Alternative Hypotheses

 7.2 Categorization of Methods

 7.3 Scanning Local Rates

  7.3.1 Goals

  7.3.2 Assumpti***

  7.3.3 Method: Overlapping Local Rates

  DATA BREAK: New York Leukemia Data

  7.3.4 Method: Turnbull et al.’s CEPP

  7.3.5 Method: Besag and Newell Approach

  7.3.6 Method: Spatial Scan Statistics

 7.4 Global Indexes of Spatial Autocorrelation

  7.4.1 Goals

  7.4.2 Assumpti*** and Typical Output

  7.4.3 Method: Moran’s I

  7.4.4 Method: Geary’s c

 7.5 Local Indicators of Spatial Association

  7.5.1 Goals

  7.5.2 Assumpti*** and Typical Output

  7.5.3 Method: Local Moran’s I

 7.6 Goodness-of-Fit Statistics

  7.6.1 Goals

  7.6.2 Assumpti*** and Typical Output

  7.6.3 Method: Pearson’s χ2

  7.*** Method: Tango’s Index

  7.6.5 Method: Focused Score Tests of Trend

 7.7 Statistical Power and Related C***iderati***

  7.7.1 Power Depends on the Alternative Hypothesis

  7.7.2 Power Depends on the Data Structure

  7.7.3 Theoretical Assessment of Power

  7.7.4 Monte Carlo Assessment of Power

  7.7.5 Benchmark Data and Conditional Power Assessments

 7.8 Additional Topics and Further Reading

  7.8.1 Related Research Regarding Indexes of Spatial Association

  7.8.2 Additional Approaches for Detecting Clusters and/or Clustering

  7.8.3 Space–Time Clustering and Disease Surveillance

 7.9 Exercises

8 Spatial Exposure Data

 8.1 Random Fields and Stationarity

 8.2 Semivariograms

  8.2.1 Relati***hip to Covariance Function and Correlogram

  8.2.2 Parametric Isotropic Semivariogram Models

  8.2.3 Estimating the Semivariogram

  DATA BREAK: Smoky Mountain pH Data

  8.2.4 Fitting Semivariogram Models

  8.2.5 Anisotropic Semivariogram Modeling

 8.3 Interpolation and Spatial Prediction

  8.3.1 Inverse-Distance Interpolation

  8.3.2 Kriging

  CASE STUDY: Hazardous Waste Site Remediation

 8.4 Additional Topics and Further Reading

  8.4.1 Erratic Experimental Semivariograms

  8.4.2 Sampling Distribution of the Classical Semivariogram Estimator

  8.4.3 Nonparametric Semivariogram Models

  8.4.4 Kriging Non-Gaussian Data

  8.4.5 Geostatistical Simulation

  8.4.6 Use of Non-Euclidean Distances in Geostatistics

  8.4.7 Spatial Sampling and Network Design

 8.5 Exercises

9 Linking Spatial Exposure Data to Health Events

 9.1 Linear Regression Models for Independent Data

  9.1.1 Estimation and Inference

  9.1.2 Interpretation and Use with Spatial Data

  DATA BREAK: Raccoon Rabies in Connecticut

 9.2 Linear Regression Models for Spatially Autocorrelated Data

  9.2.1 Estimation and Inference

  9.2.2 Interpretation and Use with Spatial Data

  9.2.3 Predicting New Observati***: Universal Kriging

  DATA BREAK: New York Leukemia Data

 9.3 Spatial Autoregressive Models

  9.3.1 Simultaneous Autoregressive Models

  9.3.2 Conditional Autoregressive Models

  9.3.3 Concluding Remarks on Conditional Autoregressi***

  9.3.4 Concluding Remarks on Spatial Autoregressi***

 9.4 Generalized Linear Models

  9.4.1 Fixed Effects and the Marginal Specification

  9.4.2 Mixed Models and Conditional Specification

  9.4.3 Estimation in Spatial GLMs and GLMMs

  DATA BREAK: Modeling Lip Cancer Morbidity in Scotland

  9.4.4 Additional C***iderati*** in Spatial GLMs

  CASE STUDY: Very Low Birth Weights in Ge***ia Health Care District 9

 9.5 Bayesian Models for Disease Mapping

  9.5.1 Hierarchical Structure

  9.5.2 Estimation and Inference

  9.5.3 Interpretation and Use with Spatial Data

 9.6 Parting Thoughts

 9.7 Additional Topics and Further Reading

  9.7.1 General References

  9.7.2 Restricted Maximum Likelihood Estimation

  9.7.3 Residual Analysis with Spatially Correlated Error Terms

  9.7.4 Two-Parameter Autoregressive Models

  9.7.5 Non-Gaussian Spatial Autoregressive Models

  9.7.6 Classical/Bayesian GLMMs

  9.7.7 Prediction with GLMs

  9.7.8 Bayesian Hierarchical Models for Spatial Data

 9.8 Exercises

References

Author Index

Subject Index


作者介绍:

LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Ge***ia. He received his PhD in Operati*** Research in 1992 from Cornell University. Dr. Walle***as named Student Government Professor of th


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks") Exercises based on data ***yses reinforce concepts


书籍真实打分

  • 故事情节:9分

  • 人物塑造:7分

  • 主题深度:7分

  • 文字风格:8分

  • 语言运用:8分

  • 文笔流畅:9分

  • 思想传递:3分

  • 知识深度:6分

  • 知识广度:6分

  • 实用性:8分

  • 章节划分:5分

  • 结构布局:8分

  • 新颖与独特:9分

  • 情感共鸣:6分

  • 引人入胜:6分

  • 现实相关:6分

  • 沉浸感:5分

  • 事实准确性:6分

  • 文化贡献:8分


网站评分

  • 书籍多样性:9分

  • 书籍信息完全性:5分

  • 网站更新速度:5分

  • 使用便利性:5分

  • 书籍清晰度:8分

  • 书籍格式兼容性:6分

  • 是否包含广告:5分

  • 加载速度:4分

  • 安全性:7分

  • 稳定性:4分

  • 搜索功能:6分

  • 下载便捷性:5分


下载点评

  • 无颠倒(308+)
  • 体验满分(236+)
  • azw3(308+)
  • 微信读书(283+)
  • 藏书馆(565+)
  • 快捷(547+)
  • 中评多(527+)
  • 方便(263+)
  • 推荐购买(250+)
  • 下载快(135+)
  • 赞(232+)
  • 速度快(80+)
  • 盗版少(571+)

下载评价

  • 网友 芮***枫:

    有点意思的网站,赞一个真心好好好 哈哈

  • 网友 后***之:

    强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!

  • 网友 薛***玉:

    就是我想要的!!!

  • 网友 饶***丽:

    下载方式特简单,一直点就好了。

  • 网友 印***文:

    我很喜欢这种风格样式。

  • 网友 辛***玮:

    页面不错 整体风格喜欢

  • 网友 国***舒:

    中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到

  • 网友 林***艳:

    很好,能找到很多平常找不到的书。

  • 网友 益***琴:

    好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

  • 网友 孙***夏:

    中评,比上不足比下有余

  • 网友 步***青:

    。。。。。好

  • 网友 訾***雰:

    下载速度很快,我选择的是epub格式

  • 网友 冯***丽:

    卡的不行啊


随机推荐