Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 mobi 下载 网盘 caj lrf pdf txt 阿里云

Data Mining Techniques 数据开采技术:营销、销售与客户关系管理电子书下载地址
- 文件名
- [epub 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 epub格式电子书
- [azw3 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 azw3格式电子书
- [pdf 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 pdf格式电子书
- [txt 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 txt格式电子书
- [mobi 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 mobi格式电子书
- [word 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 word格式电子书
- [kindle 下载] Data Mining Techniques 数据开采技术:营销、销售与客户关系管理 kindle格式电子书
内容简介:
Packed with more than forty percent new and updated material, this edition shows business managers, marketing ***ysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problems.
Each chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer ***.
The authors build on their reputation for concise, clear, and practical explanati*** of complex concepts, *** this book the perfect introduction to data mining.
More advanced chapters cover such topics as how to prepare data for ***ysis and how to create the necessary infrastructure for data mining.
Covers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link ***ysis, clustering, and survival ***ysis.
作者简介:
MICHAEL J. A. BERRY and GORDON S. LINOFF are the founders of Data Miners, Inc., a c***ultancy specializing in data mining. They have jointly authored some of the leading data mining titles in the field, Data Mining Techniques, Mastering Data Mining, and Mining the Web (all from Wiley). They each have more than a decade of experience applying data mining techniques to business problems in marketing and customer relati***hip management.
书籍目录:
Acknowledgments
About the Authors
Introduction
Chapter 1: Why and What Is Data Mining?
Chapter 2: The Virtuous Cycle of Data Mining
Chapter 3: Data Mining Methodology and Best Practices
Chapter 4: Data Mining Applicati*** in Marketing and Customer Relati***hip Management
Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Chapter 6: Decision Trees
Chapter 7: Artificial Neural Networks
Chapter 8: Nearest Neighbor Approaches: Memory-Based Reasoning and Collaborative Filtering
Chapter 9: Market Basket Analysis and Association Rules
Chapter 10: Link Analysis
Chapter 11: Automatic Cluster Detection
Chapter 12: Knowing When to Worry: Hazard Functi*** and Survival Analysis in Marketing
Chapter 13: Genetic Algorithms
Chapter 14: Data Mining throughout the Customer Life Cycle
Chapter 15: Data Warehousing, OLAP, and Data Mining
Chapter 16: Building the Data Mining Environment
Chapter 17: Preparing Data for Mining
Chapter 18: Putting Data Mining to Work
Index
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
...build a model based on people who had ever responded to any offer in the past. Such a model would be good for discriminating between people who refuse all telemarketing calls and throw out all junk mail, and those who occasionally respond to some offers. These types of models are called nonresp***e models...
When missing values must be replaced, the best approach is to impute them by creating a model that has the missing value as its target variable.
其它内容:
书籍介绍
Packed with more than forty percent new and updated material, this edition shows business managers, marketing ***ysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problems Each chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer *** The authors build on their reputation for concise, clear, and practical explanati*** of complex concepts, *** this book the perfect introduction to data mining More advanced chapters cover such topics as how to prepare data for ***ysis and how to create the necessary infrastructure for data mining Covers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link ***ysis, clustering, and survival ***ysis
网站评分
书籍多样性:3分
书籍信息完全性:9分
网站更新速度:3分
使用便利性:8分
书籍清晰度:5分
书籍格式兼容性:8分
是否包含广告:7分
加载速度:6分
安全性:6分
稳定性:7分
搜索功能:3分
下载便捷性:4分
下载点评
- 盗版少(209+)
- 赚了(416+)
- 速度快(376+)
- 快捷(217+)
- 一星好评(288+)
- 三星好评(619+)
下载评价
- 网友 冯***丽:
卡的不行啊
- 网友 家***丝:
好6666666
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 菱***兰:
特好。有好多书
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 郗***兰:
网站体验不错
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
喜欢"Data Mining Techniques 数据开采技术:营销、销售与客户关系管理"的人也看了
Elmo's ABC Book mobi 下载 网盘 caj lrf pdf txt 阿里云
烈火浇愁(Priest大气磅礴口碑力作重磅上市!随书赠异控局工作档案袋等八大超值赠品!每本均含作者手写印签句子。) mobi 下载 网盘 caj lrf pdf txt 阿里云
2022年版注册道路工程师专业考试城市道路工程标准规范摘录汇编 mobi 下载 网盘 caj lrf pdf txt 阿里云
基础化学实验2--物质制备与分离(王书香)(第2版) mobi 下载 网盘 caj lrf pdf txt 阿里云
奥森日记 mobi 下载 网盘 caj lrf pdf txt 阿里云
和大人一起读 mobi 下载 网盘 caj lrf pdf txt 阿里云
天星教育2024金考卷中考45套中考试卷汇编中考真题中考试题研究必刷题福建中考45套汇编·道法 mobi 下载 网盘 caj lrf pdf txt 阿里云
网页设计与开发--HTML、CSS、JavaScript实验教程(第2版) mobi 下载 网盘 caj lrf pdf txt 阿里云
顶极样板房 mobi 下载 网盘 caj lrf pdf txt 阿里云
中学教材全解 七年级语文下 人教版 RJ版 2018春 mobi 下载 网盘 caj lrf pdf txt 阿里云
- AutoCAD 22中文版自学一本通9787121451591 正版新书正浩图书专营店 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 欧元背景下的证券市场一体化研究 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 钢琴演奏与教学研究9787573119773兴海图书专营店 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 宝宝健康成长绘本第二辑 全6册 捣蛋的阿嚏精灵走开大眼镜妖怪红细胞旅行记牙齿王国的战争 培养孩子的健康意识养成良好的生活习惯 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 新特写 mobi 下载 网盘 caj lrf pdf txt 阿里云
- ***格斗术——器械格斗 mobi 下载 网盘 caj lrf pdf txt 阿里云
- Fakes and F***eries mobi 下载 网盘 caj lrf pdf txt 阿里云
- 满满的爱献给我的宝贝 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 互联网+:助推传统行业弯道超车 mobi 下载 网盘 caj lrf pdf txt 阿里云
- 会计学(第四版) mobi 下载 网盘 caj lrf pdf txt 阿里云
书籍真实打分
故事情节:8分
人物塑造:7分
主题深度:5分
文字风格:4分
语言运用:7分
文笔流畅:4分
思想传递:6分
知识深度:9分
知识广度:8分
实用性:6分
章节划分:4分
结构布局:9分
新颖与独特:6分
情感共鸣:7分
引人入胜:7分
现实相关:4分
沉浸感:3分
事实准确性:9分
文化贡献:7分